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Abstract

Knowledge acquisition research concerned with the development of

knowledge acquisition tools is in need of a methodological approach

to evaluation. This paper describes our experimental methodology to

conduct studies and experiments of users modifying knowledge bases

with knowledge acquisition tools. We also report the lessons learned

from several experiments that we have performed using this method-

ology. Our hope is that it will help others design user evaluations of

knowledge acquisition tools. We discuss our ideas for improving our

current methodology and some open issues that remain.
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1 Introduction

The �eld of Arti�cial Intelligence has increasingly recognized throughout the

years the need and the value of being an experimental science. Some sub-

�elds have developed standard tasks and test sets that are used routinely

by researchers to show new results. Researchers in machine learning, for

example, use the Irvine data sets (Blake & Merz, 1998) to show improve-

ments in inductive learning (Quinlan, 1993; Webb et al., 1999) and routinely

use tasks like the n-puzzle or the n-queens for speed-up learning research

(Tambe & Rosenbloom, 1990; Kim & Rosenbloom, 1996).

Developing standard tests is harder in other sub�elds that address more

knowledge-intensive problems. For example, planning researchers often show

experiments in similar task domains (Gil, 1992; Gil, 1991; P�erez & Car-

bonell, 1994; Estlin, 1998). The problem is that the implementation of the

knowledge base (KB) and of the algorithms is so di�erent across systems that

the results of the experiments are often hard to analyze. One approach used

by some researchers is to use arti�cially created, very structured knowledge

bases to analyze particular behaviors. Another approach has been to de�ne

a universal language to describe planning domains, as is done in the Plan-

ning Competition of the Arti�cial Intelligence Planning Systems Conference

(McDermott, 2000).

Knowledge Acquisition (KA) research has a traditional focus on even

more knowledge-intensive problems. Di�erent systems use a wide variety of

representations and are often built to address di�erent aspects of knowledge

base reasoning as well as to acquire di�erent kinds of knowledge. In recog-

nition of the need to evaluate KA research, the community started to design

a set of standard task domains that di�erent groups would implement and

use to compare their work. This e�ort is known as the Sisyphus experiments

(Linster, 1994; Schreiber & Birmingham, 1996; Shadbolt et al., 1999), and
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the domains have included oÆce assignment, elevator con�guration, and

rock classi�cation. These experiences have been useful to illustrate partic-

ular approaches, but have not served in practice as testbeds for comparing

and evaluating di�erent approaches (Gil & Linster, 1995).

As developers of knowledge acquisition tools we wanted to evaluate our

approach, and began looking into user studies. With the exception of some

isolated evaluations of KA tools (Yost, 1992; Joseph, 1992; Murray, 1995),

we found that the �eld of knowledge acquisition had no methodology that

we could draw from to design our evaluations. Even though Arti�cial Intel-

ligence is, as we mentioned earlier, a �eld where experimental studies have

been increasingly emphasized in recent years, user studies are uncommon.

User studies to evaluate software tools and interfaces can be found in the lit-

erature of tutoring systems (Self, 1993), programming environments (Basili

et al., 1986), and human computer interfaces (Olson & Moran, 1998). These

communities are still working on developing evaluation methodologies that

address their speci�c concerns. All seem to agree on the diÆculty and cost

of these studies, as well as on their important bene�ts. Often times, the

evaluations that test speci�c claims about a tool or approach are not as

thorough or conclusive as we would like to see as scientists, yet these eval-

uations are very valuable and are shedding some light on topics of interest

(Rombach et al., 1992; Self, 1993; Basili et al., 1986; Olson & Moran, 1998).

In developing a methodology for evaluation of KA tools, we can draw from

the experiences that are ongoing in these areas.

The lack of evaluation in knowledge acquisition research is unfortunate,

but could be due to a variety of reasons. First, user evaluations are very

costly. In areas like machine learning and planning, experiments often

amount to running programs repeatedly on already existing test sets. The

evaluation of a KA tool requires that a number of subjects spend a fair
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amount of time doing the study, and for the experimenters to spend time

and other resources preparing the experiment (often months) and analyzing

the results. The most recent Sisyphus is an example of the issue discussed

above about the intimidating cost of KA evaluations: the limited number

of participants can be tracked back to the signi�cant amount of resources

required to tackle the knowledge-intensive task that was selected (Shadbolt

et al., 1999). Second, most of the research in the �eld of KA concentrates

on knowledge modeling (e.g., how a knowledge engineer models a task do-

main) and knowledge elicitation (e.g., techniques for interviewing experts).

There are very few e�orts on developing tools for users. KA tool developers

may have conducted usability studies, but the results are not reported in

the literature. Third, unless human experiments are carefully designed and

conducted, it is hard to draw conclusive results from the data.

Over the last few years, we have performed a series of user evaluations

with our KA tools that have yielded not only speci�c �ndings about our

tools but that have also allowed us to develop a methodology that we fol-

low in conducting evaluations (Gil & Tallis, 1997; Tallis & Gil, 1999; Tallis,

1999; Kim & Gil, 1999; Kim & Gil, 2000b; Kim & Gil, 2000a). This paper

describes our experimental methodology to conduct studies of users modify-

ing knowledge bases with KA tools. It also reports the lessons learned from

our experiments so it will help others design or improve future user evalu-

ations. This paper describes our experiments in enough detail to illustrate

the main points of our methodology. A more comprehensive description of

our experiments and their results can be found in the above references.

The paper describes our experiences based on tests with two particular

KA tools that we developed for EXPECT (Gil & Melz, 1996; Gil, 1994;

Swartout & Gil, 1995). EXPECT is a framework for developing and modi-

fying knowledge based systems (KBSs) whose main purpose is to enable do-
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main experts lacking computer science or arti�cial intelligence background

to directly manipulate the elements of a KB without the mediation of a

knowledge engineering. The two tools that were the subject of our evaluation

were intended to enhance some aspect of the EXPECT support to end users.

ETM (EXPECT Transaction manager) (Tallis & Gil, 1999; Tallis, 1999; Gil

& Tallis, 1997) uses typical KB modi�cation sequences (KA Scripts) to help

users make complex changes that require many steps to modify KBs. EMeD

(EXPECT Method Developer) (Kim & Gil, 1999; Kim & Gil, 2000b; Kim

& Gil, 2000a) analyzes and exploits interdependencies among KB elements

to create expectations about how new knowledge �ts and detect missing

knowledge that needs to be acquired from users. Each tool was developed

to investigate a di�erent approach to guide users in knowledge acquisition

tasks. The approaches are complementary, and we have recently integrated

the features of the tools that we found useful in the experiments in order to

create a more comprehensive and powerful KA environment for EXPECT

(Blythe et al., 2001). A brief overview of both tools can be found in Ap-

pendix A. Please note that the focus of this paper is not on the details of

these tools but on our experimental methodology and the lessons learned

from our experiments.

The paper begins by describing the methodology that we follow to evalu-

ate KA tools, illustrated with examples from our evaluations with ETM and

EMeD. The next section highlights the lessons that we learned in carrying

out our initial experiments, and describes open issues in KA experiment de-

sign. Finally, we discuss related work in KA and in other research disciplines

that conduct user studies and outline directions for future work.
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2 A Methodology to Conduct Experimental User

Studies with Knowledge Acquisition Tools

The nature of an experiment is determined by the questions that it will help

answer or understand. In our case, these are stated as claims and hypotheses

about our tools. The hypotheses to be tested determine what are the KA

tasks to be performed by users, the type of users involved, the procedure

to be followed to perform the experiment, and the data that needs to be

collected. This section discusses each of these issues in detail.

[Insert table 1 here]

Table 1 summarizes the steps in our methodology. It is by no means

a strictly sequential process, rather there is signi�cant iteration and back-

tracking across these steps due to the interactions among all the constraints

and decisions involved. For example, a hypothesis may be revisited if an

experiment cannot be designed to test it as it is stated.

2.1 Stating Claims and Hypotheses

Claims and hypotheses play a pivotal role in the evaluation process, since

the experiments revolve around them. Claims and hypotheses are related

but not necessarily the same. Claims are stated in broader terms, referring

to general capabilities and bene�ts of our tools. It is often not possible to

test a broad claim, but formulating it helps us understand what we think

are the advantages of a certain approach. Based on these broader claims,

we formulate speci�c hypotheses that we would like to test. In contrast with

claims, hypotheses are stated in speci�c terms, and we formulate them such

that an experiment can be designed to test them and yield evidence that

will lead to proving or disproving speci�c hypotheses.

Note that many experiments are designed to explore how something

works, without any speci�c hypotheses or claims. For example, several al-
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ternative interface designs can be evaluated with users to �nd out which de-

signs are more suitable, perhaps without any prior hypothesis about which

features are best.

The �rst step in the design of our evaluations is to state the main claims

regarding our KA tools. We ended up formulating similar claims for both

ETM and EMeD:

1. Users will be able to complete KA tasks in less time using the KA

tools.

Rationale: Our KA tools would support some time consuming activi-

ties involved in KB modi�cation tasks. For example, they support the

analysis of the interactions among the elements of KB and the choice

of actions to remove inconsistencies in the KB.

2. Users will make less mistakes during a KA task using the KA tools.

Rationale: Our KA tools detect missing knowledge and inconsistencies

in the KB and they also support users in �xing them.

3. The reduction in completion time and number of mistakes will be more

noticeable for less experienced users.

Rationale: Less experienced users will be the most bene�ted from

the tool's thorough guidance in making changes to a KB. The tools

will also be able to resolve the inconsistencies that arise during the

modi�cation of the KB using strategies that may be unknown to less

experienced users but are well-known to more experienced ones.

4. The reduction in time will also be more noticeable for users lacking

a detailed knowledge of the KBS implementation.

Rationale: Our tools detect interactions with already existing knowl-

edge. Our tools also reveal the existence of KB elements that can be
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reused or adapted and that the users may not be aware of. This should

be particularly noticeable when the KB is large.

5. The KA tools will be useful for a broad range of domains and

knowledge acquisition scenarios.

Rationale: Our tools are based in general domain-independent princi-

ples.

Given these claims, we were able to state speci�c and measurable hy-

potheses to be proved or disproved with experiments that were feasible given

our resources and constraints.

For example, a speci�c hypothesis for ETM corresponding to claim 1

is: Completion time for a complex KBS modi�cation will be shorter for

subject using ETM in combination with the EXPECT basic KA tool than

for subjects using the EXPECT basic KA tool alone.

A claim can be stated in more general or more speci�c terms depending

on the purpose of the claim. The claims that we showed above are speci�c

to particular KA tools and methodologies, but it would be useful to make

them part of more general claims that the whole KA �eld cares about and

that other researchers may want to hear about the state-of-the-art in KA.

For example, our experiments and those of others might help us gather

evidence towards general claims such as \It is possible for naive users to

make additions and changes to a knowledge base using current state-of-the-

art KA technology", with more speci�c claims stating what technologies help

in what kinds of KA tasks to what kinds of users.

2.2 Determining the set of experiments to be carried out

It is useful to test one or more hypotheses in few experiments, but it is

not always possible. This is the case when the hypotheses are of a very
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di�erent nature, or when a given hypothesis needs to be tested over a range

of user types, tasks, or knowledge bases. For example, if we had two di�erent

hypotheses, such as (1) a KA tool helps to perform a task more eÆciently

and (2) the KA tool scales up to large and realistic applications, then it

might be necessary to conduct one experiment for the �rst hypothesis and

a very di�erent experiment for the second hypothesis.

In practice, many hypotheses are hard to evaluate because they imply

experiments that may be unfeasible due to lack of time and other resources.

In order to show the bene�ts of a tool or technology, a useful way to

design an experiment is to perform a comparison with some baseline tool.

In this case, we have to choose carefully the baseline tool so that the only

di�erence between the two tools is the presence or absence of the technology

to be evaluated. Otherwise, we may not be able to determine if the dif-

ferences in performance were due to the technology itself or to some other

factors (e.g., a di�erent interface design or interaction style). Comparing

the performance of users using a KA tool with users using an editor to enter

knowledge is only useful if the hypothesis is that using a KA tool is bet-

ter than not using it at all, which is normally not a hypothesis that one

questions in an experiment.

We often use tool ablation experiments, where the baseline tool results

from eliminating some capability of the KA tool. For example, to test

the bene�ts of additional expectations computed by EMeD, we compared

EMeD against a basic KA tool that consisted of the same EMeD interface

where a number of expectation features had been disabled. That is, both

tools provided a similar user interface environment. We have also used

knowledge ablation experiments, where the ablated KA tool has only access

to a subset of the original knowledge base. The group of subjects that is

given the ablated tool serves as the control group. We have found these
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experiments to be the most useful and compelling kind to test claims about

KA approaches.

2.3 Designing the Experimental Setup

Once we have determined the hypotheses and the kind of experiment to be

carried out, we are able to plan the details of the experiment.

2.3.1 Users

An important issue is the choice of subjects who are going to participate.

Practical concerns often constrain the experimentation possibilities, for ex-

ample the accessibility and availability of certain types of subjects.

A central concern is minimizing the e�ects of individual di�erences(Calfee,

1975). One possibility is to use a larger number of subjects and divide them

into two separate groups: one that uses only the ablated tool and the other

that uses the non-ablated tool. We typically �nd that the number of sub-

jects tends to be small. Thus, we design our experiments as within subject

experiments. This means that each subject uses both the ablated and the

non-ablated version of the KA tool (but not to do the same task, as we

describe below). This kind of design helps to reduce the e�ect of individual

di�erences across users. Di�erent subjects use the two versions of the tool

in di�erent orders, so as to minimize the e�ects that result from increasing

their familiarity with the environment that we provide.

In some experiments we have used several groups of users, each group

of users having di�erent background and skills, particularly with respect

to their familiarity and expertise with knowledge base development and

knowledge acquisition tools and techniques.
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2.3.2 KA Tasks and Scenarios

There is a range of diÆculty of KA tasks in terms of the kinds of extensions

and/or modi�cations to be done to a KB. A KA task that requires only

adding knowledge is very di�erent in nature and diÆculty from a KA task

that requires modifying existing knowledge. Adding problem-solving knowl-

edge is a very di�erent task from adding instances, even if they are both KA

tasks. It is important to design the experiments so that it covers the kind

of KA tasks that the tool is designed for. Both our tools are targeted to

the acquisition of problem solving knowledge. We tested ETM with a KB

modi�cation task, and EMeD with a KA task that required extending an

existing KB by adding new knowledge.

An important issue in within subject experiments is that if one were to

give a subject the same exact KA task to do with the two versions of the

tool there would most probably be a transfer e�ect. This means that the

user would be unlikely to repeat errors the second time they do the task,

and that they will remember how they did something and will not need to

�gure it out the second time around. To avoid this transfer e�ect, we design

two di�erent but comparable scenarios, each involving the same kind of KA

task in the same domain but involving a di�erent aspect of the knowledge

base. One scenario is carried out with the ablated tool and the other one

with the non-ablated version of the tool. It is very important that both

scenarios are as comparable in size and complexity as possible in order for

the results of the experiments to be meaningful.

A repository of knowledge bases and scenarios to test KA tools that

could be shared by di�erent researchers would enable better comparative

evaluations among approaches, as well as reduce the amount of work required

to evaluate a KA approach in itself. The knowledge bases that we used are

available to other researchers by contacting the authors.
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2.3.3 Experimental procedure

After determining the kind of experiment to be carried out, the hypotheses,

the type of users, and the nature of the KA task, we can plan other details

of the experiment. These include, for example, what information will be

given to the subjects and in what format, what kind of interaction can the

subjects have with the experimenters during the tests (if any), how many

tasks will be given to each subject and in what order, and an indication of

the success criteria for the subjects so they know when they have �nished

the task (e.g., the �nal KB correctly solves some given problems, perhaps

according to a gold standard).

Our experiments followed the same general procedure distributed in

three stages:

Stage 1: Familiarization

The subjects attend a presentation that introduced the knowledge bases

and either ETM or EMeD.

Stage 2: Practice

The subjects execute a practice scenario comparable to the ones to be

used during the actual test. This scenario was performed once with each

version of the tool. The purpose of this practice is to make subjects familiar

with the tools, the domain, and the procedure of the experiment.

Stage 3: Test

1. Execute two test scenarios, one using each version of the tool, alter-

nating the order of the tool that is used �rst and the scenarios.
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2. Answer a feedback questionnaire regarding their impressions and diÆ-

culties in using each version of the tool. Each question is given numer-

ical range (1 to 5), so that the answers are comparable across subjects.

For each test scenario, the subjects start by analyzing the speci�cations.

Then, they perform the given scenario until the system gives the correct

results in the sample problem. During the test, the experimenter can only

assist subjects in clarifying the instructions.

We use several approaches to determine when a subject has completed

a KA task appropriately. In most cases, we take advantage of the formal

validation mechanisms in EXPECT. In these cases subjects are asked to

complete a KA task and make sure that EXPECT does not report any

errors. In some other cases, the subjects are asked to test the KBS with

a given set of problems, and make sure they obtain the expected results.

In addition, after each experiment, we check the modi�cations made by the

subjects by hand.

2.4 Determining what Data to Collect

The kind of data collected during the experiment may be determined and/or

limited by what is possible in terms of instrumenting the KA tool and the

KB environment. Intrusive ways of recording data should be avoided. For

example, we should not ask the users to �ll a long form to describe what

they just did if that is going to disrupt their train of thought and make the

overall time to complete the task longer. Voicing what they think and what

they are doing seemed �ne.

The following data was collected during the execution of our scenarios:

� Time to complete the KA task.

� Automatic log of changes to the KB (e.g., a new subgoal was added).
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� Automatic log of errors in the KB after each change to the KBS (e.g.,

a problem solving goal cannot be achieved). These errors are detected

automatically by the EXPECT framework and hence are available in

both versions of the KA tool.

� Automatic log of the features of the KA tool used during the experi-

ment (e.g., user follows a suggestion proposed by the tool).

� Detailed notes of the actions performed by the subjects (taken manu-

ally by the experimenters) including how they approached the problem

and what materials they consulted. Subjects often voice what they are

thinking and doing during the execution of the scenario. We do not

use video cameras and tapes, since we �nd the notes to be suÆcient

and more cost-e�ective.

� Questionnaires that the subjects �ll out at the end of the experiments,

with questions regarding the usability of the tools

A careful design of what to collect can enhance the quality and utility

of the collected measurements. In one experiment we treated the edition

of a KB element (with a text editor) as a single KB modi�cation action

and we only recorded its begin and end time. However, while editing a KB

element and before closing the text editor, a subject might perform several

editions which did not get individually recorded in our logs. For example,

the subject might modify several di�erent parts of a KB element, make a

mistake and then �x it, and then spend some time deciding how to proceed.

This de�ciency in our instrumentation precluded us from isolating the time

incurred in modifying individual aspects of the problem solving knowledge.

[Insert table 2 here]

A practical alternative to enforcing stricter controls is to collect very

�ne grained measurements throughout the execution of the experiment and
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based on these measurements analyze the results carefully. The collection of

�ne grained measurements has other advantages as well. The execution of a

KA task involves the execution of several small activities. Table 2 lists some

of the observed activities that subjects performed during the executions of

the experiments. Usually, a KA tool supports only some of these activities.

If we only take into account the subject overall performance we are also

weighing some activities that are not related to our claims. In the future,

we plan to isolate better the speci�c activities that our tools are intended

to support.

Collecting �ne grained data is very useful because it not only proves/disproves

the hypotheses, but it also helps to explore the potential causes of certain

experiment outcomes because there might be unforseen factors that a�ect

the outcome. For example, the analysis of the sequence of changes per-

formed to the KB revealed that some subjects spent considerable time for

irrelevant activities.

2.5 Analyzing the Data

This section lists the kinds of analysis we have performed on the data ac-

quired.

2.5.1 Normalizing Variances

Our experience indicates that raw data needs to be carefully examined and

sometimes be normalized in order to perform meaningful comparisons.

In some of our experiments, subjects solved the assigned tasks in di�erent

ways, hence the di�erences in performance are a�ected by the di�erences

in the amount of work required to implement the di�erent solutions. For

example, some subjects de�ned few general KB elements that applied to

several cases while others de�ned several speci�c KB elements that applied
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to few cases each; some subjects modi�ed existing knowledge to handle

new requirements while others added new knowledge to handle them; some

subjects relied more in the tool's intrinsic inference capabilities while others

preferred to state facts and procedures explicitly.

Depending on the hypotheses, to compensate for these di�erences we can

average the time by the number of KB elements that have been created or

modi�ed during the task, instead of comparing the total time for completing

the assigned KA task.

2.5.2 Depurating Data

Some other times the data relevant to the experiment have to be isolated or

depurated because uncontrolled factors not related to the hypotheses distort

the measurements. In our experiments with ETM, the merits the tool were

more clearly evidenced after we divided the time it took to complete the

assigned KA task in two parts: before and after the �rst KB modi�cation.

The purpose of ETM is to guide users in following up on the side e�ects

of changes to the KB, hence the merits of ETM will not be evident until

the subjects perform at least one change. The time it took for the di�erent

subjects to perform their �rst modi�cation varied considerably, possible be-

cause this �rst modi�cation included the time for understanding and planing

the assigned KA task. Discriminating between the time before and after the

�rst modi�cation helped to focus the evaluation of ETM to the features that

are more meaningful to our research.

[Insert �gure 1 here]

Isolating the data relevant to our claims might require a detailed analysis

of the gathered data. The following analysis of some data gathered in one of

the ETM evaluations illustrates this step. Figure 1 compares the subjects

performance at each step of an assigned KA task. A detailed analysis of this
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�gure reveals some anomalies that a�ected the outcome of the experiment.

For example, this �gure shows that Subject 3 in the control group spent

some extra amount of time analyzing incorrect KB answers and �xing in-

consistencies caused by his/her own mistakes (7 minutes in Change 4 and 1

minute in Change 5). ETM was not designed to prevent or help users with

this kind of mistakes. Recovering from these mistakes takes a signi�cant

amount of time. Hence, it seems unfair to compare the performance of sub-

jects when some of them made mistakes that were not related to the use of

ETM. It turns out that, even without considering this extra time the time

spent by Subject 3 does not come close to the time of the subjects that used

ETM. Thus, the data still helped validate our claim that subjects would take

less time, but the di�erence in terms of the acquisition rates between both

tools turned out to be less than if the users had not made these mistakes by

chance.

Subjects in both groups, ETM and the control group, made costly mis-

takes that severely a�ected their completion time yet handling those kinds of

mistakes was outside of the scope of ETM. As a result, these data points are

problematic. The nature of these mistakes and the time that subjects spent

�xing them varied. This was one of the factors that most severely a�ected

the results of the experiments, in which some subjects spend more than half

of their time interpreting and repairing their own mistakes. The following

are some types of mistakes made by the subjects during the experiment that

were not intended to be prevented by ETM:

� Syntax errors: Subjects made syntax errors while entering new knowl-

edge base elements using a text editor. Syntax errors were immediately

detected by a parser included in both the basic and the enhanced ver-

sions of the KA tools and were reported back to the users. Although

some errors were more diÆcult to interpret than others, all of these
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were simple to repair. Neither the text editor or the parser were among

the KA tool features being evaluated.

� Misuse of the domain structures: Subjects got confused while entering

complex knowledge base elements that made reference to other ele-

ments of the KB. For example, a subject referred to the HEIGHT of

a RIVER instead of to the HEIGHT of the BANK of a RIVER. Most

of these errors were immediately detected by a KB veri�cation facility

included in both versions of the tool. These errors were reasonably

simple to repair.

� Misconceptions of the domain model: Subjects approached the KA

task in a wrong way because they had misunderstood some aspects of

the domain. For example, one subject wrongly believed that instance

of SEAPORTS would point out to its LOCATION. However, this was

not the relation that was represented in our model but its inverse (i.e.,

LOCATIONS pointed to its SEAPORTS instead of SEAPORTS to its

LOCATIONS). Some of these errors were detected along the evolution

of the KA task when the subjects encountered clear contradictions that

made them revise their interpretation of the domain. Some other errors

were not detected until the subjects, believing that they had �nished

the assigned task, checked the KB with the provided sample problems

and obtained wrong results. Detecting and repairing these errors was

very diÆcult and sometimes required to undo some modi�cations made

erroneously by the user.

� Misunderstanding of the assigned KA task and/or omission of re-

quested changes. Subjects performed a sequence of wrong modi�-

cations because they had misunderstood the assigned task or oversaw

some changes. Locating and repairing these errors was very diÆcult
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and sometimes required to undo some modi�cations made erroneously

by the user.

In (Tallis, 1999) we present a detailed analysis of the cases that included

mistakes and suggest that if the time incurred in handling the mistakes is

subtracted then subjects in the control group take longer to complete the

modi�cation than subjects using ETM.

2.5.3 Assessing the Evidence for or against Hypotheses and Claims

[Insert table 3 here]

Once the data has been collected (and possibly depurated) it has to be

confronted with the hypotheses that had been formulated. For example, in

one of our experiments involving EMeD we obtained the results described in

Table 3 which allowed us to draw the conclusions described below. The �rst

column of Table 3 shows the average time to complete tasks for each user

group. We had (1) four knowledge engineers who had not used EMeD before

but were familiar with EXPECT (2) two knowledge engineers not familiar

with EXPECT, (3) four users not familiar with AI but had formal training in

computer science, and (4) two users with no formal training in AI or CS. The

results for di�erent user groups are shown separately to contrast the results.

The second column shows the average number of problem-solving methods

added. The last column shows the average time to build one problem solving

method, normalizing the variances as described above. The last row in the

table summarizes the results.

Based on these analyses we were able to draw the following conclusions:

� Subjects using EMeD took less time to complete the KA tasks.

EMeD was able to reduce the development time to 2/3 of the time

that users needed without it.

20



� The di�erences in time were not so evident for the less experienced

subjects. The ratio for less experienced subjects remain about the

same as the ratio for EXPECT users.

We also �nd very useful to analyze the data in detail, looking for in-

teresting and unexpected phenomena. For example, the results show that

subjects needed to add slightly less KB elements with EMeD. We may use

this additional �nding to explore some other hypotheses in the future, such

as the e�ect of EMeD on the quality of the output KBS. Also, we may inves-

tigate why the ratios did not improve as predicted for the less experienced

users.

As we mentioned earlier, the cost and resources required by empirical

controlled user studies of KA tools result in relatively small scale experi-

ments. Given the small number of subjects and tasks involved, it does not

seem appropriate to analyze the statistical signi�cance of our results. Re-

searchers in other areas concerned with evaluation do not seem to consider

this a crucial issue in current evaluation work (Self, 1993; Olson & Moran,

1998; Rombach et al., 1992). In any case, it is interesting to note that our

results stand up to standard tests of statistical signi�cance. For example,

a t-test on the results reported in (Kim & Gil, 1999) shows that they are

signi�cant at the 0.05 level with t(2) = 7.03, p <.02. Gathering data from

more subjects within each group may be more reassuring than using these

tests for validation.

3 Lessons Learned

Our evaluations were done through a multiple iteration of the steps described

in section 2. The �rst attempt to evaluate a KA tool have usually failed

but provided very useful lessons in designing the subsequent experiments.

The following list summarizes some of the lessons that we have learned from

21



our experience. Although other KA experiments may have di�erent goals

and claims, we would like share our lessons so that they can avoid the same

mistakes.

� Use within subject experiments. This helps to compensate for di�er-

ences in user performance. Each subject should perform two tasks,

one with the tool being evaluated and the other with the ablated tool.

Both tasks should be of comparable complexity.

� Use ablation experiments. This helps to explain the bene�ts of addi-

tional features e�ectively and to provide compelling results.

� Minimize the variables unrelated to the claims to be proven. For ex-

ample, in one of our experiments the KA tool allowed users to perform

the same modi�cation through two di�erent mechanisms: a text edi-

tor or a menu based interface. Having both mechanisms to perform a

modi�cation did not add any value to the experiment, however it in-

troduced unnecessary variability that complicated the analysis of the

data.

� Minimize the chances that subjects make mistakes unrelated to the

claims. Do not introduce unnecessary complications to the KA tasks.

One of our experiments required the subjects to use a construct that

is hard to understand yet subjects received little training for it. Since

the tool to be evaluated did not provide any special support to handle

this construct it would have been better to avoid the need for that

command in the experiment.

� Isolate as much as possible the data that is relevant to the hypotheses.

For example, we were able to evaluate the ETM hypotheses more ef-

fectively by focusing our analyses in the actions that followed the �rst
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modi�cation performed to the KB. The purpose of ETM is to guide

users in following up on the side e�ects of changes to the KB, hence

the merits of ETM would not be evident until the subjects perform at

least one change.

� Ensure that subjects understand the assigned KA task. We found that

the best way to do this is to ask the subjects to repeat out loud what

they understood they needed to do. These subjects had less problems

in executing the assigned tasks than the subjects that simply nod and

say they understand.

� Avoid the use of text editors. The use of a text editor in our exper-

iments caused subjects to make syntax errors. The di�erences in the

subject's skills with the text editor program also a�ected the results

of the experiments. It also did not allow us to discriminate the �ne

grained activities performed by the subjects.

� It is extremely useful to run a pre-test using a smaller-scale or a pre-

liminary version of the experimental setup (e.g., fewer users), so that

the design of the overall experiment can be debugged, re�ned, and

validated.

4 Related Work on User Studies in Knowledge Ac-

quisition and Other Fields

A few relevant user evaluations of KA tools that have been conducted to

date. We describe them in terms of the methodology that we have pre-

sented in this paper. The studies are summarized highlighting the hypothe-

ses/claims that were tested, the kinds of tasks and subjects used, the exper-

imental setup, the results reported, and any �ndings that were surprising.
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The TAQL study (Yost, 1993) was done by Greg Yost as part of his PhD

work at CMU. TAQL is a KA tool for SOAR. Yost evaluated the tool by

itself and also evaluated its performance compared to some basic data that

had been reported for two other KA tools (SALT and KNACK).

1) Evaluation of Taql

- Hypothesis: Taql has more breadth than other KA tools and still effective

- KA task: implement a new KB given a domain description

- KB domains: 10 puzzles + 9 Expert systems

- Underlying KR: production rules

- Users: Soar programmers, three subjects (including. Yost)

- Experimental setup:

- each subject given a domain description (domain-oriented, not

implementation specs) + (at most) 3 test cases

- three rounds of evaluations, starting with simple domains

- Data collected:

- times for task understanding, design, coding, debugging

- bug information: how found, what error, when and how fixed

- Results reported:

- encoding rate (minutes per Soar production) for each subject

in each domain

- average fix time for catchable and uncatchable errors pre and post tool

- Conclusions:

- subjects reduced their encoding rates over time

(i.e., programmed faster)

- encoding rate did not slow down as task size increased

2) Comparing Taql, Knack, and Salt

- Users:

- one subject for each case

- reimplementation of original system (Knack and Salt cases)

- Results reported:

- development time (hours) for Taql and for two tools (Knack and Salt)

at their respective domains (time reported for reimplementation)

- Conclusions:

- Taql outperformed role-limiting KA tools (this was a surprise)

The TURVY study (Maulsby et al., 1993) tested an approach to pro-

gramming by demonstration that learns as a user performs simple tasks.

- Hypotheses:

- H1: all users would employ same set of commands even if told nothing
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in advance about the instructions that Turvy understands,

a table of predicted set of commands was compiled in advance

- H2: users would end up communicating using Turvy's terms

- H4: users would tech Turvy simple tasks easily and complex tasks with

reasonable effort

- KA tasks and KB domains:

- modify bibliography format (main tests)

- file selection

- graphical editing

- Underlying KR: none

- Users: non-programmers

- Experimental setup:

- "Wizard of Oz" experiment (no real software, user interacts

with facilitator)

- several rounds, different types of subjects

- on main task:

- pre-pilot experiment

- pilot experiment (4 users)

- main experiment (8 subjects)

- on other domains:

- 3 subjects

- 2 subjects

- Data collected:

- videotapes, notes, interviews

- Results reported:

- qualitative results mostly (their intention)

- some quantitative results were obtained by post-analysis

- Conclusions:

- Evidence for H1, H2, H4

- Interesting findings: quiet vs talkative users

There are other experiments in the �eld of KA that are not directly rel-

evant but are worth mentioning. The Sisyphus experiments (Linster, 1994;

Schreiber & Birmingham, 1996; Shadbolt et al., 1999) show how di�erent

groups would compare their approaches for the same given task, but most

approaches lacked a KA tool and no user evaluations were conducted. A

very controversial experiment tested whether knowledge engineering models

(such as KADS models) were useful to users (Corbridge et al., 1995), but it

tested knowledge elicitation through models and did not test any tools or

systems. Other evaluations have tested the use and reuse of problem-solving

methods, but they measure code reuse rather than how users bene�t from
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KA tools (Runkel & Birmingham, 1995; Eriksson et al., 1995).

Outside of KA, there are relevant studies in other disciplines. As we

mentioned earlier, user evaluations are very uncommon in AI research. Most

evaluations involve run-time behavior of AI software with no human in the

loop. User studies are more common in software engineering, HCI, and

intelligent tutoring systems.

In software engineering, empirical evaluations have been used for years

to evaluate tools to support programmers (Basili et al., 1986). In this �eld,

many aspects and issues in the software development process have been un-

der study including languages, development environments, reuse, quality,

and software management (Rombach et al., 1992). User studies are only of

concern for a few of these topics. Our studies to date do not assess either

how our particular tools would improve the end-to-end process of developing

a knowledge base, which includes interviewing experts, building prototypes,

maintaining the knowledge base, and improving system performance. There

is relevant work in software engineering on evaluating the improvement to

the overall software development process, including studies speci�c to ex-

pert systems as software (Rombach et al., 1992). Interestingly, the kind of

controlled methods that we report in this paper generally seem to be in the

minority when it comes to evaluate software (Zelkowitz & Wallace, 1998).

Many studies do not involve users, others analyze some historical data that

may be available, and many collect observations and data as a software

project unfolds without any particular control settings.

User studies in the �eld of HCI share many of the issues that arise in the

evaluation of KA tools(Olson & Moran, 1998). An additional complication

in evaluating interfaces is that they do not work in isolation, i.e., often times

an interface can only be as good as the target system that the user ultimately

operates on through the interface. On the other hand, many of the studies
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in this area can involve more users and settings, since the tasks tend to be

simpler and the target users seem to be more numerous (e.g., users are not

required to have domain expertise).

In intelligent tutoring systems, there are recognized tradeo�s regarding

the merits and needs of di�erent approaches to evaluation (Self, 1993). Al-

though formal evaluations are generally preferred, their cost makes them

often impractical. Informal studies tend to be more common and seem to

be suÆciently informative in practice to many researchers to guide their

work.

Our studies to date do not address thoroughly the evaluation of the

product itself, i.e., the knowledge base that results from the knowledge

acquisition process. Currently, we test that the �nal knowledge base has

suÆcient knowledge to solve the right problems and generating the right

answers. Other metrics, such as measures of the quality of the knowledge

base, are also important. There is relevant work along these lines in the

expert systems area (Hayes-Roth et al., 1983; Chi et al., 1988) as well as in

software engineering (Fenton & P
eeger, 1997).

5 Conclusions

We have presented a methodology for designing user evaluations of KA tools.

We have been using it successfully in our own work to evaluate various

approaches within the EXPECT framework. We have also discussed the

lessons learned from our studies of two KA tools, and outlined some open

issues. By sharing our experiences with the KA community we hope to

contribute to make this �eld more experimental and perhaps more scienti�c.
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Appendix A: Overview of the Two Evaluated KA

Tools

This appendix describes the two KA tools that we refer in the paper.

ETM (EXPECT Transaction Manager)

The script-based knowledge acquisition (SBKA) approach (Gil & Tallis,

1997; Tallis, 1999) was conceived to support users in completing complex

KBS modi�cations. KBS modi�cations usually require changing several re-

lated parts of the KB. Identifying all of the related portions of the system

that need to be changed and determining how to change them is hard for

users to �gure out. Furthermore, if the modi�cation is not completed, the

KBS will be left inconsistent.

[Insert �gure 2 here]

To assist users in performing all of the required changes, a KA tool needs

to understand how changes in di�erent parts of the system are related. In

script-based knowledge-acquisition this is achieved by incorporating a library

of Knowledge-Acquisition Scripts, which represent prototypical procedures

for modifying KBSs. KA scripts provide a context for relating individual

changes of di�erent parts of a KBS, and hence enabling the analysis of

each change from the perspective of the overall modi�cation. ETM is our

implementation of a script-based KA tool and is integrated to the EXPECT

framework for developing KBSs. Figure 2 shows its interface.

EMeD (EXPECT Method Developer)

Successful approaches to developing knowledge acquisition tools use expec-

tations of what the user has to add or may want to add, based on how new

knowledge �ts within a knowledge base that already exists (Davis, 1979;

Marcus & McDermott, 1989; Birmingham & Klinker, 1993; Eriksson et al.,
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1995). When a knowledge base is �rst created or undergoes signi�cant ex-

tensions and changes, these tools cannot provide much support.

We performed an analysis of the KB creation task, investigating why

creating a knowledge base is hard and what sources of expectations that

KA tools can exploit in order to guide users.

� DiÆculty in designing and creating many KB elements ) Guide the

users to avoid errors and letting them look up related KB elements.

� Many pieces of knowledge are missing at a given time: ) compute

surface relationships among KB elements to �nd incomplete pieces and

create expectations from them

� DiÆculty in predicting what pieces of knowledge are related and how

) use surface relationships to �nd unused KB elements and propose

potential uses of the elements

� Inconsistencies among newly de�ned KB elements ) help users �nd

them early and propose �xes

[Insert �gure 3 here]

Through the analysis, we were able to detect several sources for such

expectations. The expectations result from enforcing constraints in the

knowledge representation system, looking for missing pieces of knowledge

in the KB, and working out incrementally the interdependencies among the

di�erent components of the KB. As the user de�nes new KB elements (i.e.,

new concepts, new relations, new problem-solving knowledge), the KA tool

can form increasingly more frequent and more reliable expectations. EMeD

(Kim & Gil, 1999; Kim & Gil, 2000b; Kim & Gil, 2000a) is the tool we imple-

mented to support users in adding problem-solving knowledge. Its interface

is shown in Figure 3.
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1. State general claims and speci�c hypotheses { what is to be tested

2. Determine the set of experiments to be carried out { what experiments
will test what hypotheses

3. Design the experimental setup

(a) Choose type of users that will be involved { what kind of back-
ground and skills

(b) Determine the knowledge base used and KA task to be performed
{ what kinds of modi�cations or additions to what kinds of knowl-
edge

(c) Design the experiment procedure { what will the subjects be told
to do at each point

4. Determine data collection needs { what will be recorded

5. Perform experiment

6. Analyze results { what results are worth reporting

7. Assess evidence for the hypotheses and claims { what was learned from
the experiment

TABLE 1: Steps for designing experiments to evaluate KA tools. It is very useful to

conduct one or more pre-tests, which involves iterating through these steps to re�ne the

overall experimental design.
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� understanding the given KA task

� deciding how to proceed with the KA task (i.e., what to do next)

� browsing the KB to understand it

� browsing the KB to �nd something

� editing (to create or to modify) a KB element

� checking that a modi�cation had the expected e�ects in the KB

� looking around for possible errors

{ browsing KB to check that it looks/behaves as expected (i.e., veri�cation)

{ running problems (i.e., validation)

{ browsing through a problem-solving trace to check that it is ok

� understanding and deciding how to �x an error

� recovering from an error by undoing previous steps (to delete or to restore a KB element)

� \putting 2 and 2 together" (i.e., stepping back and thinking about what is going on in the
system)

� using the tool

{ deciding which features in the tool to use (multiple features can support similar
functions)

{ performing actions using selected features (edit/debug/browse..)

{ understanding what the tool is showing/suggesting

TABLE 2: Activities performed by subjects during a KA session. The KA tool being tested

may only address a subset of these activities, and the experiment should be designed to

collect measurements for those speci�c activities.
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User Groups Avg. time to complete Avg. number of Time/Method (min)

tasks (min) methods added

Experienced EXPECT users:With ablated tool 54.50 6.25 8.72

Experienced EXPECT users:With EMeD 38.25 6.00 6.38

Experienced KBS users:With ablated tool 65.50 6.50 10.08

Experienced KBS users:With EMeD 39.00 5.00 7.80

Non-Experienced CS users:With ablated tool 88.00 5.50 16.00

Non-Experienced users:With EMeD 55.75 5.25 10.62

End users:With ablated tool 133.50 5.50 24.27

End users:With EMeD 102.00 6.50 15.69

All:With ablated tool 80.67 5.92 13.63

All:With EMeD 54.83 5.67 9.67

TABLE 3: EMeD Results.
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